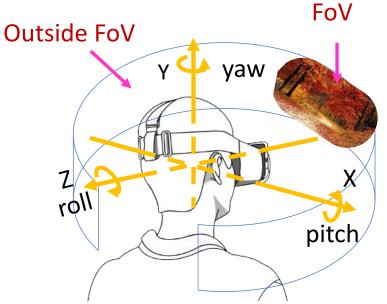
Motion-Prediction-based Wireless Scheduling for Multi-User Panoramic Video Streaming

Jiangong Chen^{*}, Xudong Qin^{*}, Guangyu Zhu⁺, Bo Ji[‡], Bin Li^{*} ^{*}Department of ECBE, University of Rhode Island, Kingston, Rhode Island, USA [†]Department of CSS, University of Rhode Island, Kingston, Rhode Island, USA [‡]Department of CS, Virginia Tech, Blacksburg, VA, USA

Motivation

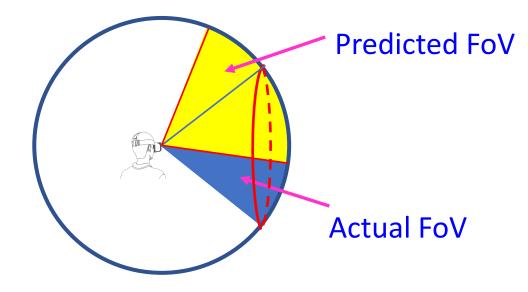
- Emerging Commercial Head-mounted Displays (HMDs)
- Panoramic video streaming provides an immersive experience for users as if they are in a virtual 3D world



Virtual Reality Classroom

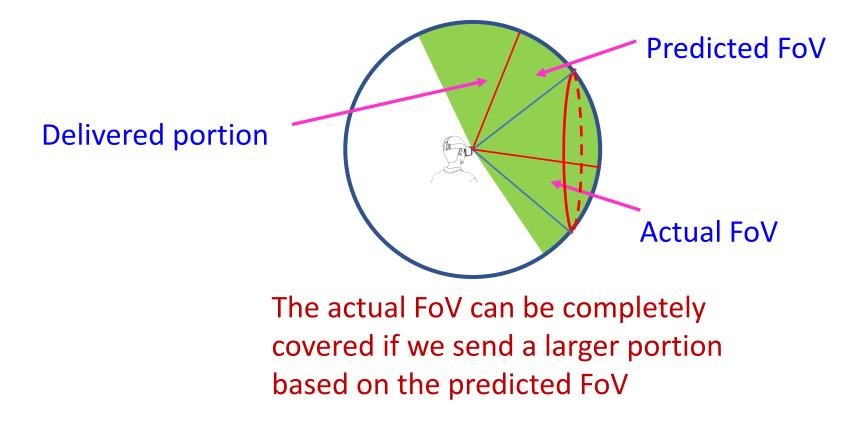
- Main challenges:
 - Large network bandwidth requirement: 4~6x bandwidth consumption of a regular video with the same resolution
 - Seamless user experience: users would compete for limited bandwidth

Opportunity


• A user may only see as little as 20% of 360° scenes, known as Field of View (FoV). It is sufficient to deliver 20% of 360° video scenes under perfect motion prediction.

Rotation coordinates and FoV

Practical Challenges


• Imperfect prediction: should deliver a portion larger than the FoV

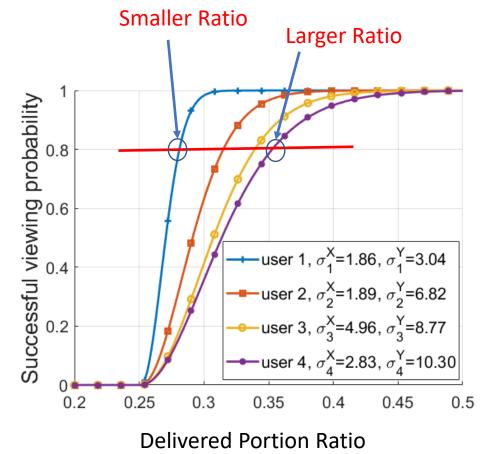
With imperfect prediction, some of the actual FoV will be missed if we only send the predicted FoV

Practical Challenges

• Imperfect prediction: should deliver a portion larger than the FoV

Successful Viewing Probability

- Prediction errors of both pitch and yaw angles of user n follow the normal distribution with standard deviation σ_n^X and σ_n^Y , respectively
- We characterize the successful viewing probability $\delta_n(S_n[t])$ as a function of the delivered portion ratio $S_n[t]$ (normalized allocated rate)


$$\delta_n(S_n[t]) = \operatorname{erf}^2\left(\frac{\gamma_n(S_n[t])}{\sqrt{2}}\right)$$

where erf $(x) \triangleq \frac{2}{\pi} \int_0^x e^{-y^2} dy$, $\gamma_n(S_n[t])$ is the number of standard deviations of the prediction error,

i.e.,

$$\begin{array}{c}
\hat{X}_{n}[t] - \gamma_{n}(S_{n}[t])\sigma_{n}^{X} < X_{n}[t] < \hat{X}_{n}[t] + \gamma_{n}(S_{n}[t])\sigma_{n}^{X} \\
\hat{Y}_{n}[t] - \gamma_{n}(S_{n}[t])\sigma_{n}^{Y} < Y_{n}[t] < \hat{Y}_{n}[t] + \gamma_{n}(S_{n}[t])\sigma_{n}^{Y}
\end{array}$$
icted angles
Real angles

Pred

First Goal: Maximizing Throughput

 Maximize the application-level throughput (defined as the weighted sum of the expected successful viewing probability)

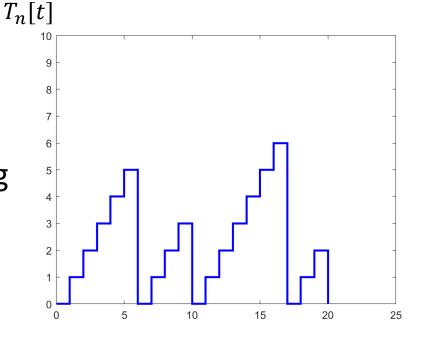
$$\max_{(S_n[t])_{n=1}^N} \lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} \sum_{n=1}^N w_n E[\delta_n(S_n[t])]$$

- Constraints:
 - Wireless interference constraints

s.t. $(S_n[t])_{n=1}^N \in \mathbf{S}^{(C[t])}, \forall t \ge 0$

 The average allocated transmission rate should not be less than some minimum rate

$$\lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} E[S_n[t]] \ge r_n, \forall n$$


Second Goal: Providing Seamless Experience

- Seamless user experience, keep service regularity (defined as the variance of the time between two consecutive successful views for each user)
- Time-Since-Last-Service (TSLS) counter:

 $T_n[t+1] \triangleq \begin{cases} 0, & \text{if } I_n(S_n[t]) = 1; \\ T_n[t] + 1, & \text{otherwise.} \end{cases}$

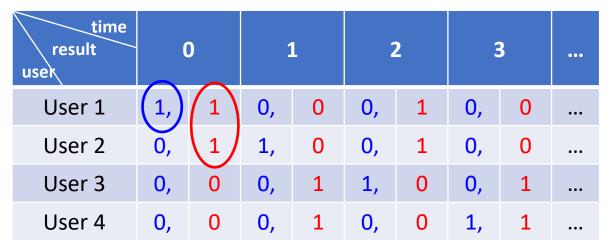
- [Li, Li, Eryilmaz 2014] showed that minimizing the expected TSLS counter is equivalent to minimizing the normalized variance of the time duration between successful services
- Our second goal is equivalent to minimizing

$$\lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} E[T_n[t]]$$

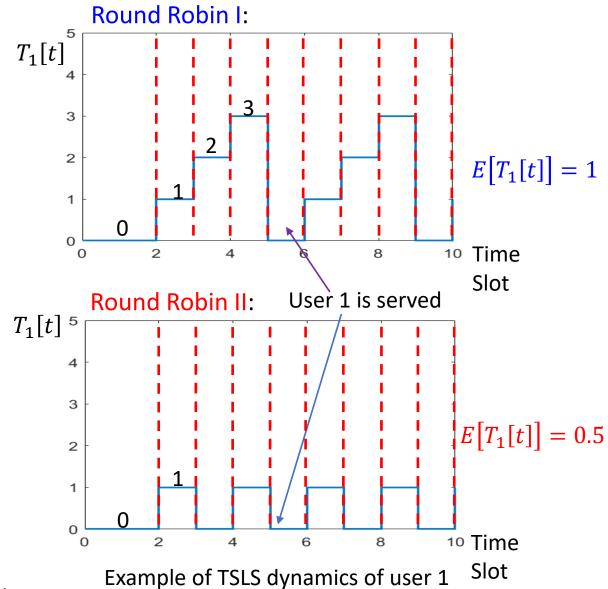
Motivating Example

time rate user	()	1	L		2	3	3	
User 1	1,		0,		0,		0,		
User 2	0,		1,		0,		0,		
User 3	0,		0,		1,		0,		
User 4	0,		0,		0,		1,		

(a) Service rate of each user in each time slot.


time result user	()	-	L		2	3	3	
User 1	1,		0,		0,		0,		
User 2	0,		1,		0,		0,		
User 3	0,		0,		1,		0,		
User 4	0,		0,		0,		1,		

(b) Successful content delivery rate of each user in each time slot.


Motivating Example

time rate user	(0		1		2	;	3	
User 1	1,	0.5	0,	0	0,	0.5	0,	0	
User 2	0,	0.5	1,	0	0,	0.5	0,	0	
User 3	0,	0	0,	0.5	1,	0	0,	0.5	
User 4	0,	0	0,	0.5	0,	0	1,	0.5	

(a) Service rate of each user in each time slot.

(b) Successful content delivery rate of each user in each time slot.

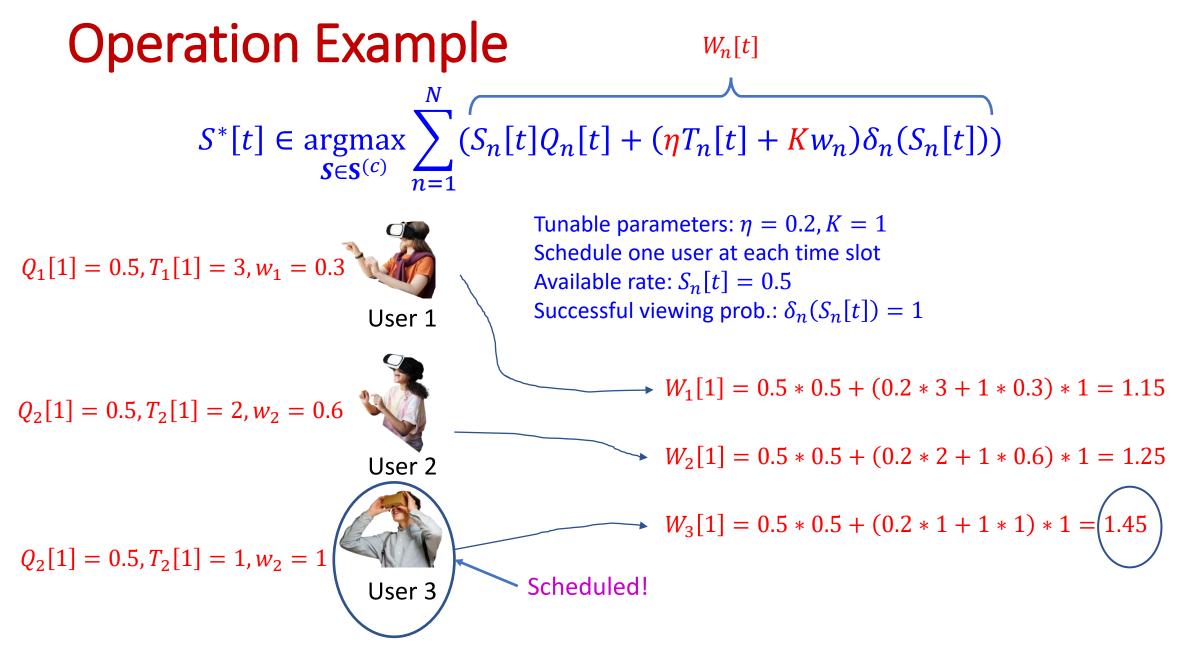
Motion Prediction

- Perform independently for each user in each axis since the correlation between $X_n[t]$ and $Y_n[t]$ is much smaller than their autocorrelations
- Autoregressive Model:

$$\hat{X}_n[t] = -\sum_{k=1}^W a_n[k]X_n[t-k]$$
 and $\hat{Y}_n[t] = -\sum_{k=1}^W b_n[k]Y_n[t-k]$

• [Fuller 2009] showed that the prediction error converges to the Gaussian distribution as the number of data samples goes to infinity

Scheduling Algorithm Design


• A virtual queue for each user that measures the degree of violation of the average service rate constraint

 $Q_n[t+1] \triangleq (Q_n[t] + r_n - S_n[t])^+, \forall n, \forall t$

Non-standard Lyapunov function that combines the virtual queue and TSLS counter

$$V[t] = \frac{1}{2} \sum_{n=1}^{N} Q_n^2[t] + \eta \sum_{n=1}^{N} T_n[t]$$

- Wireless scheduling: • Select the schedule $S^*[t]$ following: $S^*[t] \in \underset{S \in S^{(c)}}{\operatorname{argmax}} \sum_{n=1}^{N} (S_n[t]Q_n[t] + (\eta T_n[t] + Kw_n)\delta_n(S_n[t]))$ where η and K are tunable parameters Weight of User n
- Computation complexity: like the Max-Weight algorithm

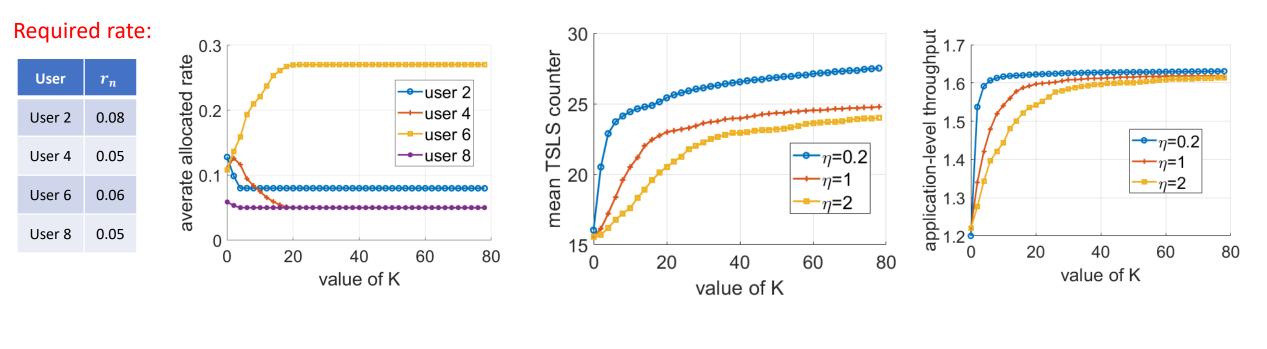
Theoretical Bounds

Algo: $S^*[t] \in \underset{\boldsymbol{S} \in \mathbf{S}^{(c)}}{\operatorname{argmax}} \sum_{n=1}^{N} (S_n[t]Q_n[t] + (\eta T_n[t] + Kw_n)\delta_n(S_n[t]))$

• Our proposed algorithm asymptotically optimizes the application-level throughput and provides seamless user experience guarantees while meeting the minimum service rate requirement, i.e.,

$$\lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} \sum_{n=1}^{N} E[w_n \delta_n(S_n[t])] \ge U^* - \frac{B(\eta)}{K} \quad ; \quad \lim_{L \to \infty} \frac{1}{L} \sum_{t=0}^{L-1} \sum_{n=1}^{N} U_n^* E[T_n[t]] \le \frac{B(\eta) + KNw_{\max}}{\eta}$$

where $B(\eta) \triangleq \sum_{n=1}^{N} \frac{r_n^2 + R_M^2}{2} + \eta N$, U^* is the optimal value of the optimization problem


- K ↗, application-level throughput ↗, mean TSLS ↗ (seamless user experience ↘)
- $\eta \nearrow$, application-level throughput \searrow , mean TSLS \searrow (seamless user experience \nearrow)

Simulation

- 8 users
- Synthetic head motion data generated from the dataset [Bao, Wu, Zhang, Ramli, Liu, 2016]
- ON-OFF channel fading
- At most two users can be scheduled
- Total available rate: 1
- Rate set: {0,0.3,0.4,0.5,0.7,1}

	User 1	User 2	User 3	User 4
Required rate r_n	0.1	0.08	0.11	0.05
Weight w_n	0.2	0.1	1.0	0.8
Fading prob. p_n	0.8	0.9	0.7	0.9
	User 5	User 6	User 7	User 8
Required rate r_n	User 5 0.18	User 6 0.06	User 7 0.16	User 8 0.05
Required rate r_n Weight w_n				

Simulation (Cont')

Average rate for each user: $\eta = 1$

Average TSLS

Application-level throughput

Related Work

- Panoramic Video Streaming:
 - [Bao, Wu, Zhang, Ramli, Liu, 2016]
 - [Qian, Han, Xiao, Gopalakrishnan, 2018]
 - [Perfecto, Elbamby, Del Ser, Bennis, 2020]
 - [Chen, Li, Srikant, 2020]
 - ...
- Wireless Scheduling Design:
 - [Li, Li, Eryilmaz, 2014]
 - [Neely, 2010]
 - [Hou, Kumar, 2013]
 - ...

Conclusions

- The successful viewing probability as the function of the delivered portion
- A motion-prediction-based scheduling algorithm by integrating it into the stochastic network optimization framework
- The proposed algorithm can provide desired application-level throughput and service regularity guarantees
- Simulation results with real datasets demonstrated the efficiency of our proposed algorithm

Thank you!