
Motion-Prediction-based Wireless Scheduling for 
Multi-User Panoramic Video Streaming

Jiangong Chen*, Xudong Qin*, Guangyu Zhu†, Bo Ji‡, Bin Li*

*Department of ECBE, University of Rhode Island, Kingston, Rhode Island, USA
†Department of CSS, University of Rhode Island,  Kingston, Rhode Island, USA

‡Department of CS, Virginia Tech, Blacksburg, VA, USA



Motivation

• Emerging Commercial Head-mounted Displays (HMDs)

• Panoramic video streaming provides an immersive experience for users as 
if they are in a virtual 3D world

• Main challenges: 
• Large network bandwidth requirement: 4~6x bandwidth consumption of a regular 

video with the same resolution
• Seamless user experience: users would compete for limited bandwidth

Virtual Reality Classroom
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Opportunity

• A user may only see as little as 20% of 360° scenes, known as Field of 
View (FoV). It is sufficient to deliver 20% of 360° video scenes under 
perfect motion prediction. 
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• Imperfect prediction: should deliver a portion larger than the FoV

Actual FoV

With imperfect prediction, some of 
the actual FoV will be missed if we 
only send the predicted FoV

Predicted FoV
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• Imperfect prediction: should deliver a portion larger than the FoV

Actual FoV

The actual FoV can be completely 
covered if we send a larger portion 
based on the predicted FoV

Delivered portion
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Successful Viewing Probability

where erf 𝑥 ≜
2

𝜋
0
𝑥
𝑒−𝑦

2
𝑑𝑦, 𝛾𝑛(𝑆𝑛 𝑡 ) is the number of 

standard deviations of the prediction error, 
i.e., 

𝑋𝑛 𝑡 − 𝛾𝑛 𝑆𝑛 𝑡 𝜎𝑛
𝑋 < 𝑋𝑛 𝑡 < 𝑋𝑛 𝑡 + 𝛾𝑛 𝑆𝑛 𝑡 𝜎𝑛

𝑋

𝑌𝑛 𝑡 − 𝛾𝑛 𝑆𝑛 𝑡 𝜎𝑛
𝑌 < 𝑌𝑛 𝑡 < 𝑌𝑛 𝑡 + 𝛾𝑛 𝑆𝑛 𝑡 𝜎𝑛

𝑌 Delivered Portion Ratio

𝛿𝑛 𝑆𝑛 𝑡 = erf2
𝛾𝑛(𝑆𝑛 𝑡 )
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• Prediction errors of both pitch and yaw angles of 
user 𝑛 follow the normal distribution with standard 
deviation 𝜎𝑛

𝑋 and 𝜎𝑛
𝑌, respectively

• We characterize the successful viewing probability 
𝛿𝑛 𝑆𝑛 𝑡 as a function of the delivered portion 
ratio 𝑆𝑛[𝑡] (normalized allocated rate)

Predicted angles Real angles
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First Goal: Maximizing Throughput
• Maximize the application-level throughput (defined as the weighted 

sum of the expected successful viewing probability) 

• Constraints:
• Wireless interference constraints

• The average allocated transmission rate should not be less than some 
minimum rate

max
𝑆𝑛 𝑡 𝑛=1

𝑁
lim
𝐿→∞

1

𝐿


𝑡=0

𝐿−1



𝑛=1

𝑁

𝑤𝑛𝐸[𝛿𝑛(𝑆𝑛 𝑡 )]

s.t. 𝑆𝑛 𝑡 𝑛=1
𝑁 ∈ 𝐒 𝐶 𝑡 , ∀𝑡 ≥ 0

lim
𝐿→∞

1

𝐿


𝑡=0

𝐿−1

𝐸 𝑆𝑛 𝑡 ≥ 𝑟𝑛, ∀𝑛
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Second Goal: Providing Seamless Experience 
• Seamless user experience, keep service regularity (defined as the variance 

of the time between two consecutive successful views for each user)
• Time-Since-Last-Service (TSLS) counter:

• [Li, Li, Eryilmaz 2014] showed that minimizing the
expected TSLS counter is equivalent to minimizing 
the normalized variance of the time duration 
between successful services

• Our second goal is equivalent to minimizing

𝑇𝑛 𝑡 + 1 ≜ ቊ
0, if 𝐼𝑛 𝑆𝑛 𝑡 = 1;

𝑇𝑛 𝑡 + 1, otherwise.

lim
𝐿→∞

1

𝐿


𝑡=0

𝐿−1

𝐸[𝑇𝑛 𝑡 ]

𝑇𝑛[𝑡]

t
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Motivating Example
time

rate
user

0 1 2 3 …

User 1 1,  0, 0, 0, …

User 2 0, 1, 0, 0, …

User 3 0, 0, 1, 0, …

User 4 0, 0, 0, 1, …

(a) Service rate of each user in each time slot.

time
result

user
0 1 2 3 …

User 1 1,  0, 0, 0, …

User 2 0, 1, 0, 0, …

User 3 0, 0, 1, 0, …

User 4 0, 0, 0, 1, …

(b) Successful content delivery rate of each user in each time slot.
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Motivating Example
time

rate
user

0 1 2 3 …

User 1 1,  0.5 0, 0 0, 0.5 0, 0 …

User 2 0, 0.5 1, 0 0, 0.5 0, 0 …

User 3 0, 0 0, 0.5 1, 0 0, 0.5 …

User 4 0, 0 0, 0.5 0, 0 1, 0.5 …

(a) Service rate of each user in each time slot.

time
result

user
0 1 2 3 …

User 1 1,  1 0, 0 0, 1 0, 0 …

User 2 0, 1 1, 0 0, 1 0, 0 …

User 3 0, 0 0, 1 1, 0 0, 1 …

User 4 0, 0 0, 1 0, 0 1, 1 …

(b) Successful content delivery rate of each user in each time slot.
Example of TSLS dynamics of user 1

𝑇1 𝑡
Round Robin II: User 1 is served

Time 
Slot

𝑇1 𝑡

Round Robin I:

0

1

3

2

1

0
Time 
Slot

10

𝐸 𝑇1 𝑡 = 1

𝐸 𝑇1 𝑡 = 0.5



Motion Prediction

• Perform independently for each user in each axis since the correlation 
between 𝑋𝑛[𝑡] and 𝑌𝑛[𝑡] is much smaller than their autocorrelations

• Autoregressive Model: 

• [Fuller 2009] showed that the prediction error converges to the 
Gaussian distribution as the number of data samples goes to infinity

𝑋𝑛 𝑡 = −

𝑘=1

𝑊

𝑎𝑛 𝑘 𝑋𝑛[𝑡 − 𝑘] 𝑌𝑛 𝑡 = −

𝑘=1

𝑊

𝑏𝑛 𝑘 𝑌𝑛[𝑡 − 𝑘]and
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Scheduling Algorithm Design
• A virtual queue for each user that measures the degree of violation of the 

average service rate constraint 

• Non-standard Lyapunov function that combines the virtual queue and TSLS 
counter

• Wireless scheduling:
• Select the schedule 𝑺∗[𝑡] following:

• Computation complexity: like the Max-Weight algorithm

𝑆∗ 𝑡 ∈ argmax
𝑺∈𝐒(𝑐)



𝑛=1

𝑁

(𝑆𝑛 𝑡 𝑄𝑛 𝑡 + 𝜂𝑇𝑛 𝑡 + 𝐾𝑤𝑛 𝛿𝑛 𝑆𝑛 𝑡 )

𝑄𝑛 𝑡 + 1 ≜ 𝑄𝑛 𝑡 + 𝑟𝑛 − 𝑆𝑛 𝑡 +, ∀𝑛, ∀𝑡

𝑉 𝑡 =
1

2


𝑛=1

𝑁

𝑄𝑛
2 𝑡 + 𝜂

𝑛=1

𝑁

𝑇𝑛 𝑡

where 𝜂 and 𝐾 are tunable parameters
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Virtual Queue TSLS counter

Weight of User 𝑛

Successful Viewing Prob.



Operation Example
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User 2

User 3

User 1

𝑆∗ 𝑡 ∈ argmax
𝑺∈𝐒(𝑐)



𝑛=1

𝑁

(𝑆𝑛 𝑡 𝑄𝑛 𝑡 + 𝜂𝑇𝑛 𝑡 + 𝐾𝑤𝑛 𝛿𝑛 𝑆𝑛 𝑡 )

𝑊𝑛[𝑡]

𝑄1 1 = 0.5, 𝑇1 1 = 3,𝑤1 = 0.3

𝑄2 1 = 0.5, 𝑇2 1 = 2,𝑤2 = 0.6

𝑄2 1 = 0.5, 𝑇2 1 = 1,𝑤2 = 1

Tunable parameters: 𝜂 = 0.2, 𝐾 = 1
Schedule one user at each time slot
Available rate: 𝑆𝑛 𝑡 = 0.5
Successful viewing prob.: 𝛿𝑛 𝑆𝑛 𝑡 = 1

𝑊1 1 = 0.5 ∗ 0.5 + 0.2 ∗ 3 + 1 ∗ 0.3 ∗ 1 = 1.15

𝑊2 1 = 0.5 ∗ 0.5 + 0.2 ∗ 2 + 1 ∗ 0.6 ∗ 1 = 1.25

𝑊3 1 = 0.5 ∗ 0.5 + 0.2 ∗ 1 + 1 ∗ 1 ∗ 1 = 1.45

Scheduled!



Theoretical Bounds

• Our proposed algorithm asymptotically optimizes the application-level 
throughput and provides seamless user experience guarantees while 
meeting the minimum service rate requirement, i.e., 

• 𝐾 ↗, application-level throughput ↗, mean TSLS ↗ (seamless user experience ↘)

• 𝜂 ↗, application-level throughput ↘, mean TSLS ↘ (seamless user experience ↗)

lim
𝐿→∞

1

𝐿


𝑡=0

𝐿−1



𝑛=1

𝑁

𝑈𝑛
∗𝐸 𝑇𝑛 𝑡 ≤

𝐵 𝜂 + 𝐾𝑁𝑤max
𝜂

lim
𝐿→∞

1

𝐿


𝑡=0

𝐿−1



𝑛=1

𝑁

𝐸 𝑤𝑛𝛿𝑛 𝑆𝑛 𝑡 ≥ 𝑈∗ −
𝐵(𝜂)

𝐾

Algo: 𝑆∗ 𝑡 ∈ argmax
𝑺∈𝐒(𝑐)

σ𝑛=1
𝑁 (𝑆𝑛 𝑡 𝑄𝑛 𝑡 + 𝜂𝑇𝑛 𝑡 + 𝐾𝑤𝑛 𝛿𝑛(𝑆𝑛 𝑡 ))

where 𝐵(𝜂) ≜ σ𝑛=1
𝑁 𝑟𝑛

2+𝑅𝑀
2

2
+ 𝜂𝑁, 𝑈∗ is the optimal value of the optimization problem

;
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Simulation

• 8 users

• Synthetic head motion data 
generated from the dataset [Bao, 
Wu, Zhang, Ramli, Liu, 2016] 

• ON-OFF channel fading

• At most two users can be 
scheduled 

• Total available rate: 1

• Rate set: {0,0.3,0.4,0.5,0.7,1}

User 1 User 2 User 3 User 4

Required rate 𝑟𝑛 0.1 0.08 0.11 0.05

Weight 𝑤𝑛 0.2 0.1 1.0 0.8

Fading prob. 𝑝𝑛 0.8 0.9 0.7 0.9

User 5 User 6 User 7 User 8

Required rate 𝑟𝑛 0.18 0.06 0.16 0.05

Weight 𝑤𝑛 0.9 1.2 0.3 0.2

Fading prob. 𝑝𝑛 0.8 0.9 0.7 0.8
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Simulation (Cont’)

Average rate for each user: 𝜂 = 1 Average TSLS Application-level throughput

Required rate:

User 𝒓𝒏

User 2 0.08

User 4 0.05

User 6 0.06

User 8 0.05
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Conclusions

• The successful viewing probability as the function of the delivered 
portion

• A motion-prediction-based scheduling algorithm by integrating it into 
the stochastic network optimization framework

• The proposed algorithm can provide desired application-level 
throughput and service regularity guarantees

• Simulation results with real datasets demonstrated the efficiency of 
our proposed algorithm
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